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Comparison of Federated Learning and Deep
Learning in Mobile Applications

Yunus Emre Acar

Abstract—This paper presents a comparative performance
analysis of Federated Learning (FL) and centralized Deep Learn-
ing (DL) approaches for Human Activity Recognition (HAR)
within mobile ecosystems. The study evaluates both paradigms
using a multi-layer neural network architecture—comprising
dense layers with 512, 256, 128, and 64 neurons—optimized
with Batch Normalization and Dropout layers to ensure training
stability and prevent overfitting. Experimental evaluations are
conducted on a Samsung Galaxy M34 mobile device using the
UCI HAR dataset, classifying six distinct physical activities
using 561 extracted features from accelerometer and gyroscope
sensors. The results demonstrate that the centralized DL model
achieves a peak classification accuracy of 94.64% with a rapid
training duration of 32 seconds. In comparison, the FL approach
provides a comparable accuracy of 93.72% while maintaining
data privacy by keeping raw sensor data on-device, though it
incurs a significantly higher training time of 9 minutes and 48
seconds due to distributed communication and synchronization
overhead. Resource consumption metrics indicate that while
centralized DL demands higher RAM (169.04 MB), the FL. weight
update mechanism is more memory-efficient (148.50 MB), mak-
ing it suitable for resource-constrained mobile environments. This
research highlights the critical trade-offs between classification
performance, training efficiency, and data privacy, concluding
that hybrid strategies are essential for the next generation of
privacy-preserving mobile AI applications.

Index Terms—Deep Learning, Federated Learning, Human Ac-
tivity Recognition, Mobile Applications, Performance Evaluation,
Privacy-Preserving Machine Learning

I. INTRODUCTION

ECENT advancements in Artificial Intelligence (AI)

have triggered a significant transformation across various
domains, particularly in text recognition, image processing,
and data analytics [7]. A prominent example of this evolution
is the implementation of Human Activity Recognition (HAR)
systems within smart home environments, which facilitate
automation and energy optimization based on user behavior
[6]. By accurately detecting physical states and mobility
levels, these systems can autonomously regulate critical home
infrastructure, such as lighting and heating systems, to align
with the occupant’s current needs.

The core logic of this sustainable approach, as illustrated in
Fig. 1, relies on a continuous feedback loop between mobile
sensors and home controllers. When the HAR model identifies
a "Rest Period” characterized by low mobility—such as sitting
or lying down—the smart home controller automatically tran-
sitions the environment into a low-energy mode. This proactive
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Fig. 1: The Example of Usability

regulation minimizes unnecessary consumption while ensuring
that high-comfort settings are only active when the user is
in an engaged state. Consequently, such systems contribute
significantly to global sustainability goals by reducing the
carbon footprint of residential buildings through intelligent
automation.

Beyond the benefits of efficiency and comfort, the inherent
sensitivity of domestic behavioral data presents a signifi-
cant challenge for traditional cloud-based Al models.As deep
learning becomes integrated into numerous human-centered
systems, the inherent security vulnerabilities of cloud-centric
architectures, such as potential data exposure and latency, have
necessitated a shift toward decentralized learning paradigms
[17]. Since raw sensor data often contains intimate details of
a user’s private life, transmitting this information to a central
server creates substantial privacy risks. This necessitates the
adoption of privacy-preserving paradigms such as Federated
Learning (FL), which allows for decentralized model training
directly on the user’s device. In this study, we evaluate the
performance of FL against traditional Deep Learning (DL)
approaches to establish a robust framework for secure and
energy-efficient smart home ecosystems.

Federated Learning has emerged as a decentralized learning
approach that prioritizes user privacy by eliminating the re-
quirement for central data collection. However, this paradigm
faces fundamental challenges, including data heterogeneity,
communication costs, and security vulnerabilities [1]. Previ-
ous research has addressed these issues through algorithms
like FedAvg and differential privacy techniques [1], while
others have highlighted the potential of FL in the Internet
of Things (IoT) and mobile environments for bandwidth
optimization [2]. Practical implementations, such as mental
health monitoring frameworks and cross-platform protocols
like FedKit, demonstrate the growing viability of FL in the
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mobile ecosystem [9], [12].

Conversely, Deep Learning (DL) continues to dominate
mobile applications due to its ability to hierarchically learn
abstract and complex patterns from large datasets. While
DL models have shown remarkable success in tasks such as
sentiment analysis and healthcare predictions, their deploy-
ment on mobile devices is often hindered by high resource
consumption in terms of memory and processing power. To
mitigate these constraints, researchers have proposed edge
computing, Neural Processing Units (NPUs), and adaptive
compression techniques [14], [15]. When comparing the two
paradigms, FL offers superior privacy and reduced bandwidth
usage, whereas DL provides higher accuracy in large-scale
homogeneous datasets [1], [2], [4].

Despite the existence of studies evaluating FL and DL inde-
pendently, there is a notable gap in the literature regarding a
direct, comprehensive comparison of these methods on mobile
hardware concerning processing time, hardware utilization,
accuracy, and data privacy [13]. This study aims to fill this void
by providing a detailed performance analysis of FL. and DL-
based systems optimized for mobile environments [1], [2]. The
primary contributions of this work include: 1) A comparative
evaluation of processing efficiency and resource consumption;
2) A privacy and security perspective on decentralized vs.
centralized processing; and 3) A roadmap for developers to
optimize next-generation Al solutions for mobile platforms
(31, [5].

The remainder of this paper is organized as follows. Section
IT reviews the fundamental principles and related work in FL
and DL. Section III details the proposed system methodology,
including model architectures and API design. Section IV
presents the experimental results and performance analysis.
Section V discusses the research findings and potential risks.
Finally, Section VI provides concluding remarks and sugges-
tions for future work.

II. RELATED WORK

The rapid evolution of on-device intelligence has led to
extensive research in both Federated Learning (FL) and Deep
Learning (DL). This section explores the state-of-the-art de-
velopments in these fields, specifically focusing on their ap-
plication and performance within mobile ecosystems.

A. Federated Learning in Mobile Systems

Federated Learning was introduced to address the privacy
limitations of traditional centralized machine learning by al-
lowing models to be trained across multiple decentralized de-
vices holding local data samples [S]. Li et al. [1] identified the
core challenges of FL as data heterogeneity, communication
costs, and privacy security, emphasizing the effectiveness of
the FedAvg algorithm in diverse environments. Abdulrahman
et al. [2] further correlated the increasing use of FL in IoT
and mobile devices with its ability to optimize energy and
bandwidth through decentralized training.

Recent practical frameworks have focused on implemen-
tation feasibility. For instance, FedKit [12] enables cross-
platform FL protocols between Android and iOS, reducing

integration barriers. In specialized applications, Suruliraj and
Orji [9] proposed frameworks for mental health monitoring
that ensure user data remains local, while Geng et al. [6]
demonstrated privacy-preserving mobile applications for smart
campuses. Despite these advancements, the impact of client
selection [10] and non-IID data distributions [11] remains
a critical area of study for model stability.The studies by
Liu et al. [5] emphasize that meta-learning based federated
approaches effectively mitigate the challenges of statistical
heterogeneity by learning global initializations that adapt to
diverse client environments with minimal gradient updates.

B. Deep Learning on Resource-Constrained Hardware

Deep Learning (DL) functions as a specialized subfield of
machine learning, utilizing artificial neural networks with mul-
tiple hidden layers to extract high-level features and patterns
from large volumes of data [16] . On the other hand, Deep
Learning has become the benchmark for complex tasks such
as sentiment analysis [7] and healthcare prediction [8] due
to its hierarchical feature learning capabilities. However, its
deployment on mobile devices is significantly limited by high
memory and processing power requirements [13]. To mitigate
these constraints, researchers have suggested the use of Neural
Processing Units (NPUs) and edge computing accelerators
[14]. Furthermore, adaptive compression techniques [15] and
hybrid approaches—where the base model remains on a server
while personalized parameters are tuned on-device—have been
proposed to enhance efficiency without sacrificing accuracy.

C. Comparative Perspectives

While many studies evaluate FL. and DL in isolation,
direct performance comparisons are sparse. Darwish and Roy
demonstrated that Federated Learning models (FL-CNN) can
achieve a high accuracy of 95.27% in IoT malware detection,
effectively competing with centralized deep learning and tra-
ditional machine learning while preserving data privacy [3].
Furthermore, Huang et al. [4] noted that while DL excels
in large-scale homogeneous datasets, FL. provides a distinct
advantage in producing personalized models in heterogeneous
data environments. This study builds upon these findings by
providing a holistic comparison of processing time, hard-
ware utilization, and accuracy specifically for Human Activity
Recognition (HAR) on modern mobile hardware.

The proliferation of mobile devices has established Human
Activity Recognition (HAR) as a core technology for diverse
applications, ranging from healthcare monitoring to exercise
assessment [19]. However, the shift toward Federated Learning
(FL) in HAR systems is driven by the increasing demand
for personalized models and robust data privacy, allowing
collaborative training without centralizing sensitive raw data
[20]. Despite these advantages, the practical implementation
of FL in mobile edge networks faces significant challenges
regarding communication overhead and energy consumption,
necessitating cost-effective optimization strategies to ensure
system convergence under resource constraints [18].
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III. SYSTEM METHODOLOGY AND IMPLEMENTATION

In this section, we detail the experimental setup, including
the dataset characteristics, neural network architectures for
both Deep Learning (DL) and Federated Learning (FL), and
the integrated system architecture consisting of a Flask-based
API and an Android mobile application .

A. Dataset and Preprocessing

Training Set - Class Distribution Test Set - Class Distributi

T 2 & B

Number of Samples

Ketvty Adivity

Fig. 2: Dataset Distribution

The proposed models were trained and evaluated using the
UCI Human Activity Recognition (HAR) dataset. This dataset
comprises sensor signals (accelerometer and gyroscope) cap-
tured from mobile devices, categorized into six distinct phys-
ical activities: walking, walking upstairs, walking downstairs,
sitting, standing, and laying. To ensure a robust training
process, the raw data underwent extensive preprocessing:

o Feature Standardization: All 561 features were stan-
dardized using a StandardScaler to improve convergence
speed and stabilize training. This transformation ensures
each feature has a mean of zero and unit variance,
preventing data leakage between sets.

o Label Encoding: Categorical target labels were trans-
formed into a One-Hot Encoded format to facilitate the
use of categorical cross-entropy loss.
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Fig. 3: Comparison of Federated Learning and Deep Learning Results
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B. Deep Learning Model Architecture and Training Analysis

For the centralized approach, a high-dimensional Artificial
Neural Network (ANN) was implemented to classify human
activities. The architecture comprises four dense hidden layers
with 512, 256, 128, and 64 neurons, respectively.

1) Regularization and Optimization: To mitigate internal
covariate shift, Batch Normalization was applied after
each layer. Overfitting was strictly controlled through
Dropout layers with decreasing rates of 0.5, 0.4, 0.3,
and 0.2. The model utilized the Adam optimizer with a
categorical cross-entropy loss function.

2) Training Dynamics:

The model was trained for 50 epochs with a batch size
of 32. The integration of EarlyStopping ensured that
the training halted once validation loss plateaued, while
ReduceLROnPlateau dynamically adjusted the learning
rate to fine-tune the weights.

As illustrated in the training curves presented in Fig. 3a,
exhibited a consistent upward trend in accuracy, reaching
a terminal test accuracy of 94.64%.As for the confusion
matrix in Fig. 3¢, the "Laying” class achieved a perfect
accuracy of 100.0%, while ”Sitting” was identified as
the most challenging class at 85.3% due to its similarity
to the ”Standing” position in accelerometer data.

C. Federated Learning Protocol

The FL framework utilized the same ANN architecture as
the centralized model to ensure a fair performance comparison.
In this decentralized scenario, each subject from the dataset
acted as an independent virtual client, creating a natural Non-
IID (Independent and Identically Distributed) environment .
The training was conducted using the Federated Averaging
(FedAvg) algorithm [1]:

1) Training Dynamics:

Despite the distributed nature and communication over-
head, the FL. model converged to a high test accuracy
of 93.72% in Fig. 3b. The analysis of the training
graphic revealed that while the accuracy is slightly
lower than the DL model (a 0.92% difference), the pri-
vacy gains—achieved by never transmitting raw sensor
data—justify this marginal performance trade-off.

2) Performance Results:

Similar to the DL approach, the FL model excelled in
distinguishing dynamic activities (Walking Upstairs at
97.9%) in Fig. 3d but faced slight fluctuations in static
activities due to the heterogeneous data distribution
across different subjects.

D. System Integration: API and Mobile Application

The HAR API system is built on a Service-Oriented Ar-
chitecture (SOA) and implemented as a RESTful web service
using the Flask framework. This modular design facilitates
the simultaneous management of Deep Learning (DL) and
Federated Learning (FL) transactions across three distinct
logical layers (Fig. 4):

« Routes Layer (Presentation Layer): This layer utilizes
Flask Blueprints to organize the API’s entry points into
specialized modules. The CommonRoutes handle system
health checks and metadata retrieval, while Federate-
dRoutes manage the coordination of distributed training
rounds. The DeepLearningRoutes are dedicated to pro-
cessing centralized inference requests. All communica-
tions are conducted via standardized JSON payloads to
ensure low-latency interoperability between the mobile
client and the server.

o Service Layer (Business Logic Layer): The core opera-
tional logic is executed within this layer. The DeepLearn-
ingService handles real-time sensor data prediction using
centralized models, whereas the FederatedService man-
ages the intake of local training updates from mobile
clients. A critical component, the GradientAggregator, is
responsible for implementing the FedAvg algorithm to
synthesize decentralized weight updates into a cohesive
global model.

o Model Layer (Implementation Layer): The ModelMan-
ager serves as a centralized controller for model life-
cycle management. It implements an intelligent caching
mechanism that loads models on demand and ensures the
persistence of global weights during iterative FL rounds
. This layer supports multiple backends, including Keras-
Model for high-performance centralized training and
TorchScriptModel for seamless deployment on resource-
constrained mobile hardware via PyTorch Mobile.

19436 &
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Fig. 5: Mobile Application UI Design.

The application is developed on the Android platform using
the Kotlin programming language and the Jetpack Compose
toolkit, adopting the Model-View-ViewModel (MVVM) pat-
tern to decouple business logic from the presentation layer.
Designed according to Material Design 3 principles, the Ul
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consists of four primary functional modules: the Federated
Learning (FL) screen for managing local and global fed-
erated training processes, the Deep Learning (DL) screen
for server-side inference, the History screen for analyzing
past predictions, and the Model Info screen for presenting
model characteristics. This structured architecture enables the
asynchronous execution of complex sensor data streams and
model synchronization processes without compromising the
user experience.

At the core of the system, the sensor data processing
pipeline executes to transform raw accelerometer and gyro-
scope signals into meaningful feature vectors. Tri-axial data
obtained from the mobile device hardware is sampled at a
frequency of 50 Hz and segmented into sliding windows
of 128 samples to capture temporal patterns. From each
window, 561 distinct statistical features are extracted, covering
metrics such as mean, standard deviation, signal magnitude
area (SMA), energy, and correlation in both the time and
frequency domains.

On an operational level, the application offers a hybrid
working model. To provide local on-device inference capa-
bilities, the models were converted to the PyTorch Mobile
format, enabling them to operate independently of a network
connection. In Federated Learning scenarios, local training
is performed without raw user data leaving the device; only
encrypted model weight updates are transmitted to the central
API, demonstrating a privacy-by-design approach. To enhance
the resource efficiency of the system, asynchronous data man-
agement is provided through Kotlin Coroutines and StateFlow
structures.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS

In this section, we present a comprehensive performance
evaluation of the proposed Federated Learning (FL) and Deep
Learning (DL) systems. The experiments were conducted on a
Samsung Galaxy M34 mobile device equipped with an Exynos
1280 CPU (2.4 GHz), 6 GB of RAM, and a Mali-G68 GPU.
All metrics were calculated as the average of 20 independent
runs to ensure statistical reliability.

A. Resource Utilization: CPU and RAM

CPU Usage Comparison RAM Usage Comparison

169.04 MB

44.26% 159.46 MB

148.50 MB

CPU Usage (%)
RAM Usage (MB)

FL (Local) FL (Local) FL with
Weight Updates
Method

FLwith
Weight Updates
Method

Fig. 6: CPU and RAM Comparison

The impact of each approach on mobile hardware resources
is a critical factor for user experience and energy efficiency.
As shown in our measurements:

o CPU Usage: The FL (Local) inference utilized 44.26% of
the CPU, as all computations were performed on-device.
In contrast, the FL approach with weight updates showed
a reduced CPU load of 37.40%, as the heavy training
was offloaded while maintaining prediction capabilities.
The centralized DL model recorded a CPU usage of
43.79%, primarily driven by API communication and data
preparation tasks.

¢ RAM Consumption: The DL method exhibited the high-
est memory footprint at 169.04,MB due to the overhead
of managing API sessions and data buffers. The FL
(Local) scenario required 159.46,MB. Notably, the FL
weight update mechanism proved to be the most efficient,
consuming only 148.50,MB of RAM.

B. Inference Latency and Duration

Latency is a key indicator of real-time usability in mobile
HAR systems.

o The FL (Local) method achieved the fastest results
with an average prediction duration of 2.780 seconds,
benefiting from the absence of network latency.

o The Centralized DL prediction took 3.340 seconds,
where the duration was directly influenced by network
conditions and server response times.

o The FL with Weight Updates process required 4.470
seconds, reflecting the additional time needed to transmit
model gradients to the server after local prediction.

C. Model Accuracy and Convergence Analysis

The trade-off between decentralized privacy and classifica-
tion performance was analyzed through two distinct training
strategies.

1) Iteration Sensitivity:

FL vs DL: Training Time and Accuracy Comparison

Training Time Comparison Accuracy Comparison
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Fig. 7: Training Duration and Accuracy Comparison by Iter-
ation

The DL model demonstrated high stability, maintaining
accuracy between 90.33% and 94.33% even with limited
iterations. Conversely, the FL. model showed high sensi-
tivity to the number of communication rounds, starting
at 50.49% accuracy at 3 iterations and reaching 89.58%
at 20 iterations.

2) Final Performance with Early Stopping:
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Model Performance: Accuracy vs Training Duration
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Fig. 8: Accuracy Duration by Early Stopping

When optimized using early stopping, the centralized
DL model achieved a superior accuracy of 94.64% in
a training duration of just 32 seconds . The FL model
reached a comparable accuracy of 93.72%, though its
distributed training required 9 minutes and 48 seconds
to converge due to synchronization and communication
overhead .

These results indicate that while DL remains the benchmark
for accuracy and training speed, FL provides a robust and
privacy-preserving alternative with a manageable performance
penalty .

V. DISCUSSION AND PRACTICAL IMPLICATIONS

This section evaluates the research findings through a multi-
dimensional lens, incorporating SWOT and risk analyses to
provide a holistic view of the trade-offs between centralized
and decentralized learning in mobile environments.

A. Strategic Analysis: SWOT Assessment

The integration of FL and DL within a single mobile
framework offers unique strategic advantages. Our SWOT
analysis reveals that the primary strength of the centralized
DL model lies in its stable performance and high classification
accuracy. Conversely, the FL architecture excels in preserving
user privacy and ensuring compliance with data protection
regulations by keeping sensitive sensor data on-device.

However, significant weaknesses persist. The FL approach
suffers from slower convergence and higher communication
overhead, which can impact device battery life and bandwidth
consumption. On the other hand, the centralized DL paradigm
faces inherent risks related to large-scale data breaches and
centralized storage vulnerabilities. Opportunities for future
growth include the proliferation of 5G and edge computing,
which will likely reduce FL communication latencies and
enable more complex on-device training.

B. Risk Assessment and Mitigation Strategies

The deployment of machine learning on mobile devices
entails various technical and security risks:

« Security and Privacy Risks: While FL enhances privacy,

it is susceptible to model poisoning and adversarial up-

dates. Robust aggregation methods and anomaly detection

are essential to mitigate these threats. Centralized DL
remains vulnerable to inference attacks on stored data,
necessitating strong encryption and strict access controls.

o Operational Risks: Device heterogeneity (varying
CPU/RAM capacities) and high client dropout rates can
degrade the quality of federated global models [10].
Implementing asynchronous FL protocols and adaptive
training schedules can ensure system resilience in dy-
namic mobile network conditions.

o Regulatory Compliance: Adherence to frameworks such
as GDPR and HIPAA is critical, especially for healthcare-
oriented HAR systems. FL provides a significant advan-
tage here by minimizing data movement and naturally
supporting the right to be forgotten™ principle.

C. The Privacy-Performance Trade-off

The empirical results underscore a fundamental trade-off:
the 1% accuracy advantage and significantly lower training
time of DL must be weighed against the superior privacy
guarantees of FL. For applications where real-time personal-
ization and data confidentiality are paramount (e.g., healthcare
monitoring), the performance penalty of FL is acceptable. For
general-purpose applications requiring maximum accuracy and
minimal device load, centralized DL remains the preferred
choice.

D. Practical Implications for Developers

Our findings suggest that a hybrid strategy—using central-
ized DL for initial global feature extraction and FL for local
personalization—offers the most balanced solution. Develop-
ers should focus on optimizing on-device resource usage by
utilizing NPU-based accelerators and implementing efficient
synchronization protocols to minimize the communication-
energy footprint of mobile Al applications.

VI. CONCLUSION

This study provided a comprehensive comparative eval-
uation of Federated Learning (FL) and centralized Deep
Learning (DL) for Human Activity Recognition (HAR) on
mobile platforms. Our experimental results, conducted on real-
world mobile hardware, demonstrate that while centralized DL
maintains a slight performance advantage with a classification
accuracy of 94.64%, FL offers a highly competitive alternative
at 93.72% while inherently ensuring user data privacy. The
primary trade-off identified lies in training efficiency, where
DL converges in approximately 32 seconds compared to the
9 minutes and 48 seconds required for the distributed FL
architecture.

The analysis of resource utilization revealed that FL
paradigms, particularly the weight update mechanism, offer a
more memory-efficient profile (148.50 MB RAM) than central-
ized approaches, making them viable for long-term on-device
deployment. However, the operational latencies associated
with FL. communication rounds and the technical challenges
posed by device heterogeneity remain significant hurdles for
widespread adoption.
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We conclude that FL and DL are not mutually exclusive
but rather complementary technologies. DL provides a robust
foundation for global model development, while FL enables
the critical personalization required for privacy-sensitive mo-
bile applications. Consequently, a hybrid strategy—utilizing
centralized pre-training followed by localized federated fine-
tuning—emerges as the most effective roadmap for developing
high-performance, privacy-preserving mobile Al systems.

Future research directions should focus on: The implemen-
tation of asynchronous FL protocols to mitigate synchroniza-
tion delays; The development of adaptive model architectures
that adjust to varying device hardware capacities; The Exten-
sive field testing with real-world, non-IID user data to validate
system resilience against environmental noise. Furthermore,
strengthening FL security against emerging threats like gradi-
ent leakage and model poisoning remains paramount for the
next generation of mobile intelligent systems.
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